avni.mapping.geodesy module#
- avni.mapping.geodesy.getplanetconstants(planet: Union[None, str] = None, configfile: Union[None, str] = None, option=None)[source]#
Load the astronomic-geodetic constraints for a planet from a configuration file.
- Parameters
- planettp.Union[None,str], optional
_description_, by default None so
constants.planetpreferred()
- configfiletp.Union[None,str], optional
all the planet configurations are in this file., by default None so read from so
get_configdir/constants.planetpreferred()
- option
GRS option for constants, by default None so use the default one
- :Authors:
Raj Moulik (moulik@caa.columbia.edu)
- :Last Modified:
2023.02.16 5.00
- avni.mapping.geodesy.evaluate_grs(GM: Union[None, float] = None, f: Union[None, float] = None, a_e: Union[None, float] = None, omega: Union[None, float] = None, R: Union[None, float] = None, nzo: int = 10, store: bool = False)[source]#
Calculate geopotential constants in a reference earth model.
All the following page numbers and equation numbers refer to the book Physical Geodesy by Hofmann-wellenhof and Moritz [HWM06]
- Parameters
- GMtp.Union[None,float], optional
Gravitational constant times mass reference, by default None
- ftp.Union[None,float], optional
Flattening, by default None
- a_etp.Union[None,float], optional
Semi-major axis, by default None
- omegatp.Union[None,float], optional
Angular velocity, by default None
- Rtp.Union[None,float], optional
_description_, by default None
- nzoint, optional
Number of zonal harmonics (2,4,… 2*nzo), by default 10
- storebool, optional
Store in constants or return as output if False, by default False
- Returns
- barC2n
Normalized even zonal harmonics of the corresponding Somigliana-Pizzetti normal field. barC2n(:,1): normalized zonal harmonics barC2n(:,2): degree of the zonal harmonic [2 4 … 2*nzo]
- geqt
Normal gravity at the equator
- gpol
Normal gravity at the pole
- U0
Normal potential at the ellipsoid
- m
omega^2*a^2*b/(GM)
- ecc
First eccentricity
- eccp
Second eccentricity
- a_p
Semi-minor axis
- E
Linear eccentricity
- c
Polar radius of curvature
- Authors
Raj Moulik (moulik@caa.columbia.edu)
- Last Modified
2023.02.16 5.00