avni.mapping.geodesy module#

avni.mapping.geodesy.getplanetconstants(planet: Union[None, str] = None, configfile: Union[None, str] = None, option=None)[source]#

Load the astronomic-geodetic constraints for a planet from a configuration file.

Parameters
planettp.Union[None,str], optional

_description_, by default None so constants.planetpreferred()

configfiletp.Union[None,str], optional

all the planet configurations are in this file., by default None so read from so get_configdir/constants.planetpreferred()

option

GRS option for constants, by default None so use the default one

:Authors:

Raj Moulik (moulik@caa.columbia.edu)

:Last Modified:

2023.02.16 5.00

avni.mapping.geodesy.evaluate_grs(GM: Union[None, float] = None, f: Union[None, float] = None, a_e: Union[None, float] = None, omega: Union[None, float] = None, R: Union[None, float] = None, nzo: int = 10, store: bool = False)[source]#

Calculate geopotential constants in a reference earth model.

All the following page numbers and equation numbers refer to the book Physical Geodesy by Hofmann-wellenhof and Moritz [HWM06]

Parameters
GMtp.Union[None,float], optional

Gravitational constant times mass reference, by default None

ftp.Union[None,float], optional

Flattening, by default None

a_etp.Union[None,float], optional

Semi-major axis, by default None

omegatp.Union[None,float], optional

Angular velocity, by default None

Rtp.Union[None,float], optional

_description_, by default None

nzoint, optional

Number of zonal harmonics (2,4,… 2*nzo), by default 10

storebool, optional

Store in constants or return as output if False, by default False

Returns
barC2n

Normalized even zonal harmonics of the corresponding Somigliana-Pizzetti normal field. barC2n(:,1): normalized zonal harmonics barC2n(:,2): degree of the zonal harmonic [2 4 … 2*nzo]

geqt

Normal gravity at the equator

gpol

Normal gravity at the pole

U0

Normal potential at the ellipsoid

m

omega^2*a^2*b/(GM)

ecc

First eccentricity

eccp

Second eccentricity

a_p

Semi-minor axis

E

Linear eccentricity

c

Polar radius of curvature

Authors

Raj Moulik (moulik@caa.columbia.edu)

Last Modified

2023.02.16 5.00